Source code for qrisp.alg_primitives.state_preparation.prepare_func
"""
********************************************************************************
* Copyright (c) 2025 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************
"""
import numpy as np
from jax.errors import TracerArrayConversionError
from qrisp.alg_primitives.state_preparation.qswitch_state_preparation import prepare_qswitch
from qrisp.alg_primitives.state_preparation.qiskit_state_preparation import prepare_qiskit
[docs]
def prepare(qv, target_array, reversed=False, method = "auto"):
r"""
This method performs quantum state preparation. Given a vector $b=(b_0,\dotsc,b_{N-1})$, the function acts as
.. math::
\ket{0} \rightarrow \sum_{i=0}^{N-1}b_i\ket{i}
Parameters
----------
qv : QuantumVariable
The quantum variable on which to apply state preparation.
target_array : numpy.ndarray
The vector $b$.
reversed : boolean
If set to ``True``, the endianness is reversed. The default is ``False``.
method : str, optional
String to specify the compilation method. Available are ``qiskit``, ``qswitch`` and ``auto``.
``qiskit`` is more gate-efficient but ``qswitch`` can also process dynamic arrays.
The default is ``auto``.
Examples
--------
We create a :ref:`QuantumFloat` and prepare the state $\sum_{i=0}^3b_i\ket{i}$ for $b=(0,1,2,3)$.
::
b = np.array([0,1,2,3])
qf = QuantumFloat(2)
prepare(qf, b)
res_dict = qf.get_measurement()
for k, v in res_dict.items():
res_dict[k] = v**0.5
for k, v in res_dict.items():
res_dict[k] = v/res_dict[1.0]
print(res_dict)
# Yields: {3: 2.9999766670425863, 2: 1.999965000393743, 1: 1.0}
"""
from qrisp.jasp import check_for_tracing_mode
from qrisp.misc import check_if_fresh
tracing = int(check_for_tracing_mode())
if not tracing:
expected = 1 << qv.size
if target_array.size != expected:
raise ValueError(
f"Statevector length must be {expected} for {qv.size} qubits, "
f"got {target_array.size}."
)
norm = np.linalg.norm(np.asarray(target_array))
if np.isclose(norm, 0.0):
raise ValueError("The provided statevector has zero norm.")
#if not check_if_fresh(qv.reg, qv.qs):
# raise ValueError(
# "Tried to initialize qubits which are not fresh anymore."
# )
target_array = np.asarray(target_array) / norm
if method == "auto":
try:
target_array = np.array(target_array)
method = "qiskit"
except TracerArrayConversionError:
method = "qswitch"
if method == "qiskit":
prepare_qiskit(qv, target_array, reversed)
elif method == "qswitch":
if not reversed:
raise Exception("Reversed state preparation is currently not available for method qswitch")
prepare_qswitch(qv, target_array)
else:
raise ValueError("method must be 'auto', 'qiskit', or 'qswitch'")